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F
or pricing of electricity derivatives, we cannot simply rely
on models for financial and other commodity contracts.
Electricity spot prices exhibit spikes, mean reversion, non-
constant volatility and large seasonal variations because

electricity is a commodity with limited storability and transportabil-
ity – factors that strongly affect the behaviour of electricity spot and
derivatives prices.

These peculiar characteristics have led researchers to develop special
models for electricity prices. Although academic interest is growing,
the number of papers addressing the specific valuation problems is rela-
tively limited and only a few have been published to date. We recog-
nise two different sets of power contract valuation approaches. The
first consists of simultaneously modelling spot and forward contracts.
This approach faces the difficulty that standard arbitrage principles
cannot be applied to mapping spot prices to forwards and futures, since
the concept of a convenience yield1 is not applicable to a non-storable
commodity. The second approach takes the market forward curve as
given and is in contrast with the models above that derive the forward
curve endogenously – that is, solely from the spot price process2. We
follow the second approach. 

Movements in electricity spot prices are not log-normally distrib-
uted and standard option-pricing formulas, based on normality
assumptions, may yield incorrect outcomes. In order to derive an
option-pricing methodology, we follow the approach of Clewlow and
Strickland (1999) and Lucia and Schwartz (2002), but extend their
mean-reverting framework with a new process for the spikes as a sepa-
rate and independent regime. We therefore model power prices as a
two-regime process: a normal regime for the mean-reverting process
– which can be extended to include seasonality – and a spike regime.
We show how an option price can be split into a mean-reverting and
a spike component. Especially for out-of-the-money call options, this
spike value represents the major component of total option value, as
we show with an example based on Dutch Amsterdam Power
Exchange (APX) spot prices.

The two-regime model for spot electricity prices
A standard mean-reverting specification is relatively successful in model-
ling commodities such as oil and natural gas. It is often applied to elec-
tricity markets, but with less success, because of the existence of spikes.
Parameter calibration may lead to unrealistically high volatility, incor-
rect mean-reversion parameters and too-high price levels to which the
spot prices would converge (see Huisman and Mahieu (2001)). 

The most common approach is to model spikes using a stochastic
jump model. Jump models allow for sudden extreme returns that lead

to long-term shifts in price levels. Spikes are relatively short-lived and
affect mean-reversion parameters, since the mean-reversion component
is used to model the force that brings the spot price back to normal
levels after a spike has occurred. 

To incorporate the special characteristics of electricity spot prices,
Huisman and Mahieu (2001) assume the dynamics of electricity prices
can be described by different regimes. They propose a regime-switch-
ing model incorporating three regimes: a mean-reverting normal
regime, an initial jump regime that models the process when prices
suddenly increase or decrease, and a subsequent jump regime, that
describes how prices are forced back to the stable regime. The main
drawback of the Huisman and Mahieu (2001) model is that it does
not allow for multiple consecutive jumps3, which are common in elec-
tricity markets. Allowing for consecutive jumps is crucial for proper
risk assessment and derivatives pricing. 

In this paper, we propose a model with only two regimes: a stable,
mean-reverting regime and a spike regime. It might seem unlikely that
the omission of one regime gives the model the flexibility to capture
consecutive jumps. However, we don’t need a third regime to pull
prices back to stable levels, because we assume that prices in the two
regimes are independent from each other. Put differently, if there is a
generator outage, for example, prices may be high for some time
period, but once the generator is repaired, prices continue as normal.
We believe this regime specification fits well with the structure of elec-
tricity markets. As a side effect of the independence of the two
processes, we can split option values into a mean-reverting component
and a spike component. 

The two-regime framework
Following Lucia and Schwartz (2002), we model the natural logarithm
price of spot electricity s (t) as the sum of a deterministic component
f (t) and stochastic component x(t). The first component , f (.), accounts
for predictable regularities, such as any periodic behaviour and trends,
and is a deterministic function of time. The second component, x(.), is
the stochastic component, and we will refer to x(.) as the spot price,
but we must note that this actually is the spot price from which deter-
ministic trends are removed. 

In the two-regime framework, we assume that the spot price of elec-
tricity can be in one out of two regimes at each time period t. The regime
reflects the normal behaviour of electricity prices and the second reflects
the dynamics in the case of spikes. We assume that the deterministic
trend f (.) remains the same across both regimes4. The stochastic compo-
nent on the other hand is different in each of the two regimes.

We refer to the spot price in the normal regime as x(N,t) and to the

Electricity pricing

European power prices are very volatile and subject to spikes, particularly in German
and Dutch markets. Ronald Huisman and Cyriel de Jong examine the impact of spikes
on option prices by comparing prices from a standard mean-reverting model and a
regime model that disentangles the spike process from the mean-reverting dynamics

Option pricing for power 
prices with spikes

1 A commodity has a positive convenience yield if there is value in keeping the commodity
in stock – for example, to keep the production process running at all times 

2 Examples of this approach are Clewlow and Strickland (1999), Bjerksund, Rasmussen
and Stensland (2000) and Koekebakker and Ollmar (2001) 

3 Multiple consecutive jumps may theoretically be incorporated, but would require the
estimation of a large number of switching probabilities

4 See Hamilton (1989) as a reference on regime-switching models
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spike regime as x(S,t). It is important to understand that the process is
always in only one of the two regimes. We use this feature later to derive
pricing formulas for options on spot prices.

Specification of the regimes
We follow Lucia and Schwartz (2002) and Clewlow and Strickland
(1999) for deriving a process for the normal regime N that includes
mean reversion. In this process, the parameter µ is the long-run equi-
librium level for the natural logarithm of spot prices. The parameter α
reflects the speed of convergence from the current to the equilibrium
level (see table 1). 

We assume that the behaviour of the natural logarithm of the spot
price in the case of a spike can be modelled with a simple normal distri-
bution whose mean and variance5 are higher than those of the mean-
reverting process. 

Switching between regimes
At any point in time, the spot price x (t) is either in regime N or S. To
model the transition process over time, we use a Markov transition
matrix. The Markov transition matrix Π is a 2x2 matrix with the
elements π(i, j) denoting the probability of going from regime i at
time t to regime j in t +1(i, j = N, S). Thus, π(N, S ) equals the proba-
bility that, while being in the normal process at time t , the process
will be in the spike regime in period t +1. 

We stated earlier that the two regimes are independent, which holds

true for the prices in each regime. However, the above probability
structure ensures there is a relationship between the two regimes in
terms of the probability that they occur. For example, if we observe a
spike today, then we know there is a greater probability of a spike
tomorrow than when prices were normal. This is the type of relation-
ship we observe in electricity markets. 

Parameter estimation
The parameters of the two-regime model can be calibrated by applying
maximum likelihood conditional on the regimes and assuming normally
distributed error terms. Since the regime process λ(t) is a latent process,
the type of regime is not directly observable. The Kalman filtering
methodology circumvents this problem and uses the prior and poste-
rior beliefs to apply weights to each likelihood function6.

Results from calibrating the model on Dutch APX data
As an illustration, we estimate the parameters of the two-regime model
on the Dutch market. We use Dutch APX spot market data from Janu-
ary 2, 2001 to June 30, 2002 for base-load and peak day-ahead prices,
totalling 545 observations for each price series. We define the deter-
ministic part f (t) such that it captures weekend effects, with a dummy
for the Saturdays and a dummy for the Sundays and holidays. We found
only very weak evidence of seasonality over the year, so no specifica-
tion is included for it. The deterministic component  f (t) is estimated
jointly with the stochastic model parameters. 

5 Off-peak hours are characterised by negative spikes: the mean of the spikes 
becomes negative

6 Harvey (1989) gives a description of this methodology that is the common method for
estimating latent variables
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Table 1 lists the parameter estimates of the two-regime model, along
with the results of calibrating a standard mean-reverting model and the
Huisman and Mahieu (2001) three-regime model. The table indicates
that both regime models improve the fit considerably compared with
the mean-reverting specification. 

Our two-regime model picks up, on average, 50% more spikes than
the three-regime model of Huisman-Mahieu7. This is because their
model requires an up-jump to be immediately followed by a down-
jump and is thus more restrictive on jumps. The mean-reverting
components of the two regime models are very similar in terms of
mean-reversion speed and mean-reversion level. Moreover, the volatil-
ity parameters of the mean-reverting process in both regime models
are considerably lower compared with the pure mean-reverting model.
The mean-reverting volatility in our two-regime model is below that
for the three-regime model; it transfers more erratic prices to the spike
regime. The regime models indicate that the long-run average levels
for baseload and peak spot prices are, respectively, €5 and €8 a
megawatt hour (MWh) lower than under the mean-reverting model:
a significant economic difference. 

Our regime specification picks up spikes well: expected spikes are
positive for base-load and peak, and have a much higher volatility than
in the stable mean-reverting process. When prices were in the mean-
reverting regime at t, a spike occurs with a probability of 10–13% for
day t +1. The spikes in both regime models have an expected magni-
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tude of between €53 and €58/MWh. Clearly, the spikes deviate consid-
erably from the stable price levels.

Pricing European options on the 
underlying two-regime process
We now present an intuitive methodology for pricing option
contracts on spot electricity that is assumed to follow a two-regime
process, as described in the previous section. We present an approach
for standard call and put options – deriving prices for caps, floors and
swaptions is then straightforward.

Pricing options in the two-regime framework
In setting up the two-regime framework, we assumed that, at time t ,
the spot price is in one out of two independent regimes. We can there-
fore split up the option price in a component for the normal regime
and one for the spike regime. For example, a European-style call option
c(X,τ) with maturity τ and strike X has a ‘fair’ value that equals the
expected pay-off of the option. At maturity, we know the process is in
either the normal or the spike regime. Therefore, we can calculate the
expected value of the option if we end up in the normal regime and the
expected value in the spike regime. 

Since both regime processes are log-normal, the well known Black
(1976) formula is appropriate for the calculation. Then the actual option
value equals the weighted sum of the two regime-dependent option
values, where the weights equal the probability of ending up in each of
the two regimes. These probabilities can be derived from the transition
matrix P . The option value can thus be summarised as the probability-
weighted average of two call options – one for the normal regime and
one for the spike regime. 

This breakdown of option values into two components clarifies the
impact of spikes on option values and separates it from the normal
price volatility. In a standard mean-reverting – or log-normal – frame-
work, the extremely high volatility of spikes is averaged out against
the moderate volatility of the normal regime. See, for example, the
volatility estimates in table 1. This ‘averaging-out’ largely reduces the
value of options, particularly longer-maturity out-of-the-money
options, as we show below.  

Making the expectations consistent 
with the current forward curve
Just as we split option values into a mean-reverting component and a
spike component, we can split forward prices into two components.
It is important to do this in order to align the model with market
forward prices. We use the same approach as Clewlow and Strickland
(1999) and Lucia and Schwartz (2002), who make the expectation of
the spot price consistent with the forward curve. In fact, they adjust
the long-run equilibrium level, µ, in a mean-reverting model to align
with market expectations. 

Once we have split forward prices into two components, we apply
the same adjustment to our mean-reverting regime (see De Jong and
Huisman (2002) for a detailed explanation). This adjustment avoids
the tedious modelling and estimation of all seasonal influences and
risk premiums. For example, we could not find historical evidence
for seasonal variations in the Dutch APX data, but if the current
forward curve suggests that prices in the winter will be higher than
in the summer that information will be immediately incorporated in
the price of options. 

This is extremely useful: we don’t want our derivatives to deviate
from market prices because we have a different view on forward
prices, but rather to build on market forward prices. On the other
hand, we do have a different view on the spot price process, such as
its volatility, level of mean reversion and magnitude of spikes, and
need to incorporate this in the option valuation.  

Base load Peak load
Mean-reverting α 0.414 0.421
model µ 3.414 3.609

σ 0.323 0.353
Expected price 32.018 39.292
Sunday dummy –0.569 –0.613
Saturday dummy –0.231 –0.274
Log likelihood –0.288 –0.377

Huisman and α 0.404 0.399
Mahieu (2001) µN 3.332 3.496
three-regime σN 0.207 0.209
model Expected equilibrium price 28.589 33.727

µS 0.590 0.583
σS 0.559 0.570
Expected spike 59.046 69.565
Sunday dummy –0.501 –0.528
Saturday dummy –0.230 –0.266
π(N,S)  0.066 0.092
Log likelihood –0.109 –0.191

Two-regime α 0.356 0.243
model µN 3.289 3.433

σN 0.157 0.123
Expected equilibrium price 27.157 31.209
µS 3.879 3.841
σS 0.674 0.539
Expected spike 57.760 53.826
Sunday dummy –0.468 –0.474
Saturday dummy –0.217 –0.252 
π(N,S)  0.084 0.139
π(S,N) 0.473 0.385
Log likelihood –0.075 –0.137

Table 1: Parameter estimates

7 In the Huisman-Mahieu model, we count the frequency of spikes as the sum of the up-
spikes and down-spikes
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Pricing results
In table 2, we compare prices for European call options between prices
obtained from a standard mean-reverting model and our two-regime
model. We analyse maturities of 1, 7, 15 and 46 days and strike prices
of €20, €30, €40 and €50/MWh. We take the parameter estimates
from table 1 and forward values for July 1, 2002 and assume an inter-
est rate of 5%. 

The option values that result from our two-regime spot price
model largely deviate from options in a mean-reverting framework.
The mean-reverting model suggests there is hardly any value in out-
of-the-money options on spot prices that are more than five or 10
days ahead, as prices always revert back to a long-run level. In the
mean-reverting model, volatilities decline exponentially to zero with
increasing maturity. 

The theoretical volatility of the base-load contract, for example,
declines progressively from more than 13% for the day-ahead contract
to less than 1% for the August contract (less than two months ahead),
and the effect of the declining volatility on option values is strong.
However, the regime-switch model takes into account that the trend
might be towards such a long-run level, but prices might still deviate
from it on individual days, due to spikes. The spikes imply that longer-
term options also have substantial value. 

Concluding remarks
We have presented a model for valuing options on electricity spot
prices. It takes into account the two main features of electricity prices:
strong mean reversion and occasional spikes. We obtained pricing

results by disentangling the mean-reverting spot prices from the
spikes, so that option values could be broken down into two compo-
nents. We showed that it is crucial to include spikes in any option
price formula, as they represent substantial value, especially for deep
out-of-the-money options.

This result has important implications for capped electricity
contracts. The costs of a maximum price – or cap – would be severely
underestimated by the mean-reverting model. Caps equate to a
series of call options and are often embedded in retail electricity
contracts, where they form a bridge between fixed- and floating-
price contracts. 

Consider a contract where the end-user pays the daily base-load
APX price on each day in July, but with a cap of €50/MWh. If we
take the possibility of spikes into account, such a cap would cost
around €3.43/MWh (based on an average maturity of 15 days),
whereas a supplier would give it away almost for free (€0.02/MWh)
if the wrong model were being used. EPRM
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Mean-reverting model Two-regime model

Maturity Forward Strike (€/MWh)
(days) price 20.00 30.00 40.00 50.00 20.00 30.00 40.00 50.00

Panel A: Baseload options
1 27.00 7.71 2.34 0.57 0.13 7.46 4.18 3.43 2.84
7 32.50 12.50 4.00 0.61 0.06 12.90 7.96 6.40 5.35
15 30.25 10.27 2.59 0.28 0.02 10.66 5.73 4.30 3.43
46 28.43 8.46 1.68 0.14 0.01 8.89 4.09 2.83 2.14

Panel B: Peakload options
1 38.00 18.13 9.77 4.52 1.90 18.01 11.72 10.08 8.68
7 41.75 21.73 11.87 4.14 0.86 21.79 14.47 11.31 9.18
15 40.75 20.71 10.87 3.41 0.59 20.77 13.32 10.11 8.05
46 41.25 21.12 11.30 3.68 0.67 21.18 13.73 10.50 8.41

Table 2: Prices for call options
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