

Amsterdam, 23 February 2017 Intelligent Hedging and Portfolio Optimization Summit for the Energy Market

Assessing dynamic hedging strategies

www.kyos.com, +31 (0)23 5510221 Cyriel de Jong, <u>dejong@kyos.com</u>

KYOS Analytical Platform

Gas Markets

- KyStore
- KySwing

Power Markets

- KyPlant
- KyCurve
- KyPowerFundamentals

- Gas storage valuation / hedging
- Swing (option) contract valuation / hedging

- Power plant valuation / hedging
- Hourly price forward curves (incl. intra-day)
- Fundamental power market modelling

Price and Risk Management

- PRM / ETRM
- KyRisk
- KyVaR
- KySim

- Portfolio & Risk Management System
- Earnings-At-Risk reporting and analysis
- Value-at-Risk reporting and analysis
- Monte Carlo price simulation

Why dynamic hedging?

- Reduce price exposures
- Make more money, for example because:
 - You are long flexibility (gamma)
 - You can be more active in short-term markets

But: weigh benefits against costs of trading and other risks (liquidity, credit)

How to trade successfully, consistently?

- There should be a clearly defined and sensible hedge target
- There should be a clear process which leads to hedging decisions
- Traders should know their benchmark and be assessed against this benchmark
- The performance of the whole strategy should be monitored quite frequently

Elements of the "benchmark" hedging strategy

- Which assets / contracts?
- Over what horizon?
- With what trading products?
- With what frequency of rehedging?
- Against which prices?
- With what assumptions about trading costs?
- Using what calculation of exposure?
 - Intrinsic versus Delta
 - Volume-neutral versus Value-neutral or Risk-minimal?

Delta (exposure): change in contract or asset value as a result of a small change in the underlying price:

E.g. taking a call option C: δ = ΔC / ΔS

Note:

- Delta hedges can be calculated for a range of exposures / commodities
- Delta hedges can be calculated for a range of products and granularities
- Delta hedges can be compared to intrinsic hedges

Delta/Intrinsic hedges for a gas storage

How to calculate delta sensitivities? (1)

Example:

- Value of the storage is 10 mln €
- We need delta for Jan-17, forward price is 25 €/MWh

Approach 1 = shock based / finite difference:

- Increase Jan-17 price to 25.01
- Recalculate storage value: 10.0161 mln €
- Delta = 0.0161 mln / 0.01 = 1.61 mln MWh
- Note: recalculation may use parts of the main calculation, but calculation time is long if this is applied to each month

Approach 2 = Basket of spreads:

- Define storage as set of spread options and calculate delta per option
- Note: not very accurate, due to overlapping nature of storage

How to calculate delta sensitivities? (2)

Approach 3 = volume approximation:

- Suppose that the average withdrawal in Jan-17 is 1.5 mln MWh
- Then a 0.01 €/MWh increase in all prices, and assuming unchanged strategy, increases the value by 15,000 €
- Hence, delta = 1.5 mln MWh

Approach 4 = value approximation (very accurate):

- Suppose that the average withdrawal in Jan-17 is 1.5 mln MWh
- On average, the value of the withdrawals is 40.5 mln € (average withdrawal price is 27 €/MWh)
- Then the delta is 40.5 / 25 = 1.62 mln MWh
- Note: this can be implemented easily and is calculated quickly

Three main approaches to hedging

- 1. Intrinsic hedging, possibly rolling (forward curve)
- 2. Hedging the expected future volumes (Monte Carlo)
- 3. Hedging the expected future value (Monte Carlo)

Note:

- 3 is (almost) equal to the true delta hedge
- 2 may be quite close to 3
- 1 can be very suboptimal (though you may be lucky)

Translating delta exposures to trades

- Model may calculate daily or monthly delta exposures
- Should be netted with existing position and other exposures
- Remainder should be most effectively traded in the market:
 - Minimize transaction cost
 - Minimize open position / risk, either in terms of volume, value or risk (Earnings-at-Risk)

Delta Hedge

View results for profile DE - Coal 40pc

Calculating dynamic hedges within simulations

- For the current day t, the above approach(es) can be used to calculate the hedges
- Likewise, based on historical market prices, the hedges can be calculated at past periods and used to analyze 'model-based' past hedge performance
- However, to analyze a dynamic hedging strategy in the future, we need:
 - To simulate spot and forward prices F(t,T,i)
 - For each future date t and simulation i, estimate the optimal hedge of a forward with delivery T

Intuition of dynamic hedges within simulations

- Let's consider a CCGT power plant and it's exposure to 2018 spark spreads. Max capacity is 100 MW.
- Today (Feb-17) suppose:
 - Peak spark spread for 2018 is 5 €/MWh
 - Using Monte Carlo simulations the delta hedge is 40 MW
- How will this hedge evolve over time? Consider 1 July 2017:
 - Sim 1: 2018 spark spread = 10 €/MWh → hedge = 60 MW
 - Sim 2: 2018 spark spread = 0 €/MWh → hedge = 20 MW
- The optimal rehedge volumes can be calculated with regression analysis: "path dependent delta hedges"

Earnings-at-Risk / Cashflow-at-Risk

What is EaR/CfaR?

What is the distribution of future earnings or cashflows of my portfolio?

Difference VaR and EaR/CfaR

- VaR: worst-case drop in market value over a short horizon
- EaR: worst case realization of total earnings over a long horizon

Example: impact of dynamic versus static hedge

Earnings at Risk Histogram

Optimal trades resulting from delta hedges

Commodity Exposure under Static Hedge Strategy

Show/hide hedge strategy table

Optimal Trades

Date	Product	Delivery Type	Lots	Volume	Unit	Mid Price	Trade Prices	Currency	Bid-Ask Costs	Trading Costs	Currency
2017-02-22	2017-02-23	Peakload	21	1 260	MWh	35.65	35.68	EUR/MWh	31.50	0	EUR
	BOW	Baseload	5	2 400	MWh	25.91	25.94	EUR/MWh	60	0	EUR
	BOW	Peakload	-15	-1 800	MWh	38.58	38.55	EUR/MWh	45	0	EUR
	BOM	Baseload	-5	-3 600	MWh	28.79	28.77	EUR/MWh	90	0	EUR
	BOM	Peakload	-5	-1 200	MWh	39.69	39.67	EUR/MWh	30	0	EUR
	Mar 2017	Baseload	-9	-33 435	MWh	36.69	36.64	EUR/MWh	1 672	0	EUR
	Mar 2017	Peakload	-11	-15 180	MWh	42.87	42.82	EUR/MWh	759	0	EUR

Case study: gas storage

- Virtual storage in the TTF market
- Working volume of 1000 MWh
- Injection rate = 10 MWh/day, withdrawal rate = 20 MWh/day
- Injection cost = 0.5 €/MWh, withdrawal cost = 0.2 €/MWh

We consider storage year 15/16 and 16/17

Relevant questions:

- What is the (fair) value of this storage bundle?
- What trading strategy should be employed to realize this value?

SY 15/16 – all products

Product Name	Begin Date	End Date	Bid Price	Mid Price	Ask Price	Intrinsic Hedge	Delta Hedge	\Rightarrow
2015-04-01	2015-04-01	2015-04-01	22.36	22.37	22.38	0	-7.19	
BOW	2015-04-01	2015-04-05	21.67	21.68	21.69	0	14.85	
Apr 2015	2015-04-01	2015-04-30	21.54	21.57	21.59	0	126.53	
Apr 2015	2015-04-01	2015-04-30	21.56	21.57	21.58	0	0	
Q2 2015	2015-04-01	2015-06-30	21.51	21.53	21.56	0	0	
Weekend - 04 Apr	2015-04-04	2015-04-05	21.41	21.42	21.43	20	-0.09	
Week - 06 Apr	2015-04-06	2015-04-12	21.51	21.52	21.53	0	12.27	
May 2015	2015-05-01	2015-05-31	21.54	21.57	21.59	0	111.66	
Jun 2015	2015-06-01	2015-06-30	21.44	21.47	21.49	60	106.67	
Q3 2015	2015-07-01	2015-09-30	21.31	21.33	21.36	920	441.07	
Q4 2015	2015-10-01	2015-12-31	22.41	22.44	22.46	0	-221.74	
Q1 2016	2016-01-01	2016-03-31	22.95	22.98	23.00	-1 000	-686.18	

SY 15/16

Backtest Values

Strategy	Projected value (EUR)	Realized value (EUR)
Intrinsic daily	1 169	
Intrinsic monthly	1 069	
Intrinsic tradable	885.37	
Rolling intrinsic	2 228	1 436
Spot	2 525	-6 149
Spot with static intrinsic hedge		2 535
Spot with static delta hedge		1 178
Spot with dynamic intrinsic hedge		2 182
Spot with dynamic delta hedge		2 509
20		

SY 16/17

Backtest Values

Strategy	Projected value (EUR)	Realized value (EUR)
Intrinsic daily	1 026	
Intrinsic monthly	959.50	
Intrinsic tradable	347.19	
Rolling intrinsic	1 244	1 316
Spot	1 513	4 272
Spot with static intrinsic hedge		1 705
Spot with static delta hedge		754.45
Spot with dynamic intrinsic hedge		2 151
Spot with dynamic delta hedge		2 263