

Amsterdam, 9 May 2017 FLAME conference

The Value of Storage

Forecasting storage flows and gas prices

www.kyos.com, +31 (0)23 5510221 Cyriel de Jong, <u>dejong@kyos.com</u>

KYOS Energy Analytics

Analytical solutions for trading, valuation & risk management in energy markets

Name	DE Intrinsic €/MWh	DE Simulation €/MWh	UK Intrinsic £/MWh	UK Simulation £/MWh
Coal 46%	3.38 🛧	5.44 🛧	4.93 ♥	6.11 🖖
Coal 46% option	6.18 🛧	7.93 🛧	7.80 🗸	8.78 🖖
Gas 60%	1.12 ↓	3.91 🛧	6.15 ♥	7.11 🗸
Gas 60% option	1.58 ₩	4.27 🛧	6.79 ₩	7.72 ₩

Market	Product	Period	Option	
			Avg	10%
TTF	30/30	SY2017	3.00 🖖	2.30
TTF	60/60	SY2017	1.92 🖖	1.46
TTF	60/120	SY2017	1.47 🖖	1.11
NBP	30/30	SY2017	18.27 🛧	14.83
NBP	60/60	SY2017	12.90 🛧	10.92
NBP	60/120	SY2017	10.72 🛧	9.12

Power markets

Power plant optimization, valuation, hedging Forward curves and Monte Carlo simulations

Gas markets

Storage and swing contracts valuation and Optimization of gas portfolio assets and contracts

Multi-commodity portfolio & risk management

Commodity Trade & Risk Management At-Risk software: VaR, EaR, CfaR

Free monthly valuation reports: www.kyos.com/knowledge-center

The gas value chain: flexibility is key

Stable production, unstable demand, storage mainly used to manage flexibility

Gas storage modeling

 Gas storage modeling software for the optimal management of gas storage assets

The software reveals:

Future: what is the expected market trading value?

Medium-term: what are the optimal forward trades?

Short-term: inject, withdraw or do nothing?

Past: how much money could have been made?

- Methodology: least-squares Monte Carlo
 - Storage is a real option; maximize its flexibility value
 - Using Monte Carlo price simulations, find optimal trades

From storage modeling to forecasting

Goal: predict storage flows and gas market prices

Step 1 & 4: KYOS

Step 2 & 3: clients

Step 1.

Using market prices (forward) and volatility, forecast storage flows

Step 4.

Forecast market price movement to balance supply – demand

Step 2.

Combine storage flows with forecasts of: gas demand – gas production – gas imports

Step 3.

If balance is short (long), then period is under (over) priced relative to other periods

Example: spot trading signal (1 storage)

Slow storage product:

- 1000 MWh working volume, 5% full
- 150 days to fill, 150 days to release (6.67 MWh/day)
- Valuation on 5 May 2017
- Front-month (June) price = 15.82 €/MWh
- Spot price = 15.85 €/MWh

Inject below a spot midprice of: 15.90

Withdraw above a spot midprice of: 16.78

Inject 6.67 MWh.

Example: spot trading signal (multiple storages)

Withdraw

from slow

3 storage assets, all 1000 MWh working volume:

- Medium: 12.5 MWh/day (160 days cycle)
- Fast: 25.0 MWh/day (80 days cycle)

Forecasted volumes for a gas storage

Research questions

- How well does the KYOS model optimize the trading decisions?
 - Backtesting to see if model's trading decisions create enough extrinsic value
- How well does the KYOS model predict actual storage flows?
 - Some storage assets are optimized in the market
 - Some storage assets are not (much) optimized in the market

Forecasting DE storage flows 1-month ahead

Sum-15: falling market prices; spot lower than expected

Apr-17: higher spot prices than expected (on 30 Mar 17)

Jan-17: higher spot prices than expected (on 30 Dec 16)

Forecasting DE storage flows 1-month ahead

Forecasting UK storage flows 1-month ahead

UK, excluding Rough:

Simulation based forecast 40% better than intrinsic forecast

Day-ahead volume forecast: Bergermeer (TTF)

Bergermeer DA price responsiveness

Right graph:

- X-axis: price signal = spot price "indifference price" (€/MWh)
- Y-axis: actual daily flow (GW)
- Hypothesis: high price differential leads to high withdrawal volume
- Regression results support hypothesis; 40% of daily flows explained by spot price (R-squared)

Conclusion

- Forecast of storage flows is key component of price forecast (time spreads)
- Storage models can help forecast storage flows
- Simulation approach (many price scenarios) works better than intrinsic approach (single scenario) to forecast storage flows
- Forecasting performance in UK and Germany is very similar

